851. Molecular Polarisability. The Molar Kerr Constants, Polarisations, etc., of Ten Polynuclear Hydrocarbons as Solutes in Benzene.

By R. J. W. Le Fèvre and K. M. S. Sundaram.

Values, from experiment, of the semi-axes of the polarisability ellipsoids of benzene, triphenylene, and coronene, suggest that $10^{23} b_{3}=0.413+$ $0.0548 n$, where n is the number of carbon-carbon links in the molecule. This empirical equation is used, in conjunction with molar Kerr constants and refractivities, to estimate b_{1}, b_{2}, and b_{3} for eight other polynuclear hydrocarbons. Results appear credible but at present cannot be checked by direct measurement.

Least unsuccessful of the attempts to correlate carcinogenic activity with molecular features seem to be those involving the sizes ${ }^{1,2}$ or shapes ${ }^{2,3}$ of the carcinogens and details of the electron distributions ${ }^{4,5}$ therein. The anisotropy of polarisability of a molecule depends considerably on the same factors; ${ }^{6 a}$ information-to date absent from the literature-on this property for cancer-producing substances might therefore be of interest. As a background to subsequent work the ten polynuclear hydrocarbons listed in Tables 1 and 2 have been examined. Several of them are parent structures of active carcinogens. Moreover, through their non-polarities, they present difficulties similar to those previously encountered with naphthalene; ${ }^{66}$ ways of overcoming these require consideration.

[^0]Table 1.
Increments of refractive indexes, densities, Kerr and dielectric constants observed with solutions in benzene at 25°.

Solute: Anthracene

whence $\sum \Delta n / \sum w_{2}=0.163 ; \sum \Delta n^{2} / \sum w_{2}=0.488 ; \quad$ whence $\sum \Delta n / \sum w_{2}=0.252 ; \sum \Delta n^{2} / \sum w_{2}=0.756$;
$\Sigma \Delta d / \sum w_{2}=0.2029 ; \sum \Delta \varepsilon / \sum w_{2}=0.501_{4} ;$
$\Sigma \Delta B / \Sigma w_{2}=2.22 \times 10^{-7}$.

whence $\sum \Delta n / \sum w_{2}=0.247 ; ~ \sum \Delta n^{2} / \sum w_{2}=0.741$;
$\Sigma \Delta d / \Sigma w_{2}=0.2567 ; ~ \sum \Delta \varepsilon / \sum w_{2}=0.744 ;$
$\Sigma \Delta B / \sum w_{2}=8.79 \times 10^{-7}$.
whence $\sum \Delta n / \sum w_{2}=0.246$;
$\Sigma \Delta n^{2} / \Sigma w_{2}=0.739 ; \Sigma \Delta d / \sum w_{2}=0.2486$;
$\Sigma \Delta \varepsilon / \sum w_{2}=0.728 ; \Sigma \Delta B / \Sigma w_{2}=7.50 \times 10^{-7}$
Solute: Pyrene

	10													
$10^{5} \% e_{2}$	810	1082	1304	1621	1833	2165	2431	2698	$10^{5} w_{2} \ldots$	121	206	303	434	541
$10^{4} \Delta n$	18	24	29	36	43	48	55	58	$10^{4} \Delta n \ldots$	3	4	6	9	12
$10^{4} \Delta n^{2}$	54	71	87	107	129	144	164	173	$10^{4} \Delta n^{2}$	9	12	18	27	36
$10^{5} \Delta d$	193	257	309	387	438	516	580	647	$10^{5} \Delta d \ldots$	32	50	76	109	130
$10^{4} \Delta \varepsilon$	54	71	95	108	123	138	160	175	$10^{4} \Delta \varepsilon \ldots$	8	14	18	31	35
$10^{10} \Delta B$	34	45	54	66	76	89	100	121	$10^{11} \Delta B$	78	134	209	273	347

whence $\sum \Delta n / \sum w_{2}=0.223 ; \sum \Delta n^{2} / \sum w_{2}=0.666$;
$\Sigma \Delta d / \sum w_{2}=0.2386 ; \Sigma \Delta \varepsilon / \Sigma w_{2}=0.656 ;$
$\Sigma \Delta B / \sum w_{2}=4.195 \times 10^{-7}$

$$
\begin{gathered}
\sum \Delta n^{2} / \sum w_{2}=0.636 ; \sum \Delta d / \sum w_{2}=0.2474 ; \\
\sum \Delta \varepsilon / \sum w_{2}=0.661 ; \\
\sum \Delta B / \sum w_{2}=6.486 \times 10^{-7} .
\end{gathered}
$$

Solute: Fluoranthrene						
$10^{5} w_{2} \ldots \ldots$	234	501	675	844	919	1132
$10^{4} \Delta n \ldots \ldots$	5	12	15	18	21	26
$10^{4} \Delta n^{2} \ldots$	15	36	45	54	63	77
$10^{5} \Delta d \ldots \ldots$	50	111	142	170	192	242
$10^{4} \Delta \varepsilon \ldots \ldots$	15	30	49	56	62	69
$10^{11} \Delta B \ldots$	136	276	411	472	515	645
whence $\sum \Delta n / \sum w_{2}=0.225 ;$						
$\sum \Delta n^{2} / \sum w_{2}=0.674 ; ~$	$\sum \Delta d / \sum w_{2}=0.2107 ;$					
$\sum \Delta \varepsilon / \sum w_{2}=0.653 ; ~$	$=0 B / \sum w_{2}=5 \cdot 70 \times 10^{-7}$.					

Solute: Coronene						
$10^{6} w_{2} \ldots$	529	540	693	812	1028	1138
$10^{4} \Delta n \ldots$	1	1	2	3	3	4
$10^{4} \Delta n^{2} \ldots$	3	3	6	9	9	12

$10^{6} w_{2}$	\ldots	348	529	540	693	764	812	820	903
$10^{5} \Delta d$	\ldots	10	15	15	20	21	23	23	25

whence $\sum \Delta d / \sum w_{2}=0.2810$.

$10^{6} w_{2} \ldots$ $10^{4} \Delta \varepsilon$	529 5	540 6	693 5	764 7	812	820	1138 11
whence $\Sigma \Delta \varepsilon / \sum w_{2}=0.944$.							
$10^{6} w_{2} \quad .$.	264		439		703		914
$10^{10} \Delta B \ldots$	3		5		8		11

whence $\sum \Delta n / \sum w_{2}=0.223 ; \sum \Delta n^{2} / \sum w_{2}=0.668$;
$\sum \Delta d / \sum w_{2}=0.2385 ; \sum \Delta \varepsilon / \sum w_{2}=0.652$;
$\Sigma \Delta B / \Sigma w_{2}=6.12 \times 10^{-7}$.

Table 2.
Total polarisations at infinite dilution, molar refractions, dipole moments, and molar Kerr constants calculated from Table 1.

Solute	$\alpha \varepsilon_{1}$	β	γ	$\gamma^{\prime} n_{1}{ }^{2}$	δ	$\begin{aligned} & \infty P_{2} \\ & \text { (c.c.) } \end{aligned}$	$\begin{aligned} & \infty R_{\mathbf{D}} \\ & \text { (c.c.) } \end{aligned}$	$\begin{aligned} & \infty\left(m K_{2}\right) \\ & \times 10^{12} \end{aligned}$
Anthracene	0.604	$0 \cdot 2126$	$0 \cdot 135$	0.573	$13 \cdot 22$	$68 \cdot 0$	$67 \cdot 3$	183
Phenanthrene........	0.501_{4}	$0 \cdot 2322$	0.109	$0 \cdot 488$	$5 \cdot 41_{5}$	$63 \cdot 4_{4}$	$62 \cdot{ }_{4}$	$78 \cdot 5$
Naphthacene	0.741	$0 \cdot 2891$	0.168	0.756	$23 \cdot 20{ }^{5}$	$87 \cdot 1$	$87 \cdot 2$	403
1,2-Benzanthracene	0.744	$0 \cdot 2938$	0.165	0.741	21.44	86.9	86.3	373
Pyrene.	0.656	0.2731	0.149	$0 \cdot 666$	$10 \cdot 23$	$75 \cdot 0$	74.9	160
Chrysene	0.728	$0 \cdot 2845$	$0 \cdot 164$	0.739	$18 \cdot 30$	86.9	86.9	319
Triphenylene	0.661	$0 \cdot 2831$	$0 \cdot 142$	0.636	15.82	$84 \cdot 2$	82.5	277
Fluoranthrene	0.653	$0 \cdot 2411$	0.150	0.674	13.90	$77 \cdot 1$	$77 \cdot 4$	217
Perylene	0.652	$0 \cdot 2730$	0.149	0.668	14.93	$93 \cdot 5$	$93 \cdot 6$	288
Coronene	0.944	$0 \cdot 3216$	$0 \cdot 197$	0.886	$28 \cdot 40$	122.6	$118 \cdot 9$	650

Experimental

Solvent and Solutes.-Sodium-dried thiophen-free benzene was partially frozen, and the remelted solid stored over sodium wire. The solutes used had m. p.s as follow: anthracene (chromatographically pure), 216-217 ; phenanthrene, $101-102^{\circ}$; naphthacene, $340-341^{\circ}$; l,2-benzanthracene, $159-160^{\circ}$; pyrene, $149-150^{\circ}$; chrysene, $250-251^{\circ}$; triphenylene, $198-$ 199°; fluoranthrene, $110-111^{\circ}$; perylene, $273-274^{\circ}$; and coronene, $>400^{\circ}$ (lit., $438-440^{\circ}$). The triphenylene was a gift from Professor G. M. Badger (University of Adelaide); apart from this the hydrocarbons were commercial specimens recrystallised from benzene. Purified samples of anthracene, fluoranthrene, perylene, and coronene were also presented by Dr. L. E. Lyons (University of Sydney).

Measurements and Results.-Apparatus and techniques have been those standard here. ${ }^{6 a, c, 7}$ Table 1 lists the changes of refractive index (Na light), density, dielectric constant, and Kerr constant caused by weight fractions w_{2} of solute in benzene; when $w_{2}=0$ the properties named have values, respectively, at 25° as follow: $n_{1}=1.4973, d_{1}=0.87378, \varepsilon_{1}=2.2725$, and $B_{1}=$ 0.410×10^{-7}. Symbols are defined and methods of calculation explained in refs. $6 a$ and c; they are briefly summarised in ref. 8.

Discussion

Dipole Moments.-Despite the non-centrosymmetric structures of phenanthrene (I), 1,2-benzanthracene (II), and fluoranthrene (III), the closeness of the total polarisations and molecular refractions listed in Table 2 shows each solute to have a dipole moment experimentally undistinguishable from zero. Similar conclusions have previously been reached with anthracene, ${ }^{9}$ phenanthrene, ${ }^{10}$ naphthacene, ${ }^{11}$ and triphenylene. ${ }^{12}$ Wesson ${ }^{13}$ quotes the polarity of perylene as $1 \cdot 3-2 \cdot 1 \mathrm{D}$, but Bergmann, Fischer, and Pullman ${ }^{12}$ report it as $0.45 \pm 0 \cdot 15 \mathrm{D}$. Our experience has been that the dielectric constants of solutions of several of these hydrocarbons rise on storage, presumably owing to oxidation, and thus lead to apparent moments up to ca. 1 D ; the higher past results with perylene may have been so caused. Of course, from the molecular dimensions given in ref. 14 for anthracene, pyrene, perylene, and coronene, and in ref. 15 for chrysene, non-polarity is to be expected.

[^1]Molar Kerr Constants.-To the values in Table 2 we add the ${ }_{m} K$'s already recorded for benzene ${ }^{6 d}$ and naphthalene ${ }^{6 b}\left(7 \cdot 2_{4} \times 10^{-12}\right.$ and $48 \cdot 1 \times 10^{-12}$, respectively). Being nonpolar, all these hydrocarbons must have zero θ_{2} terms in the expansion ${ }_{m} K=$

(II)
(I)

(VI)

(V)

(III)

(IV)

(VII)

(VIII)

(IX)
$2 \pi \mathrm{~N}\left(\theta_{1}+\theta_{2}\right) / 9$ (cf. p. 286 of ref. $6 a$), so that the observed molar Kerr constants can directly provide estimates of the quantity

$$
Q=\left(b_{1}-b_{2}\right)^{2}+\left(b_{2}-b_{3}\right)^{2}+\left(b_{3}-b_{1}\right)^{2}
$$

where b_{1}, b_{2}, and b_{3} are the semi-axes of the molecular polarisability ellipsoid; Q is thus a measure of the anisotropy in each case. Alternatively, with $S=b_{1}+b_{2}+b_{3}$ from ${ }_{\mathrm{E}} P=0.95 R_{\mathrm{D}}$, the anisotropy may be expressed by the quotient Q / S^{2} (cf. Le Fèvre and Rao ${ }^{16}$). Values of Q and S are in Table 3. By either criterion the rapid increase

Table 3.
Anisotropies of polynuclear hydrocarbons.

	$10^{46} \mathrm{Q}$	$10^{23} S$	$10^{3} \mathrm{O} / \mathrm{S}^{2}$		$10^{46} \mathrm{O}$	$10^{23} S$	$10^{3} \mathrm{Q} / S^{2}$
Benzene	$0 \cdot 29$	2.976	33	Pyrene	$6 \cdot 40$	$8 \cdot 461$	89
Naphthalene	1.92	$4 \cdot 970$	78	Chrysene	12.8	$9 \cdot 817$	133
Anthracene..	$7 \cdot 32$	$7 \cdot 602_{5}$	127	Triphenylene ...	$11 \cdot 1$	$9 \cdot 320$	128
Phenanthrene.	3-14	7.053_{5}	63	Fluoranthrene	$8 \cdot 68$	8.743	1135
Naphthacene	$16 \cdot 1$	9.850_{5}	166	Perylene	11.5	10.57	103
1,2-Benzanthracene	14.9	9.749	157	Coronene	26.0	13.43	144

of anisotropy resulting from an additional ring is noticeable in the linear sequence, benzene, naphthalene, anthracene, and naphthacene, Q / S^{2} changing by $0.04-0.05$ per extra ring. Angular attachment appears to lower the anisotropy, e.g., among the four isomers $\mathrm{C}_{18} \mathrm{H}_{12}$ from naphthacene (IV), through 1,2 -benzanthracene (II), and chrysene (VI), to triphenylene (VII), or from anthracene to phenanthrene. However, no regular relations with numbers of rings or bonds can be discerned.

Semi-axes of Polarisability Ellipsoids.-As ref. $6 b$ explains, with non-polar structures three differing semi-axes cannot be evaluated by the methods applicable to polar molecules. However, among the twelve hydrocarbons under consideration three should, by symmetry, have polarisability ellipsoids of revolution, so that only two unknowns ($b_{1}=b_{2}$, and b_{3}) require to be found; from earlier ${ }^{6 \boldsymbol{d}}$ measurements on benzene and the data in Table 2 the following can be deduced:

	$b_{1}=b_{2}$	b_{3}
Benzene $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	$1 \cdot 12$	$0 \cdot 73_{6}$
Triphenylene $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	3.89	$1 \cdot 54$
Coronene $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	$5 \cdot 68$	2.07

[^2]Of the three polarisabilities (longitudinal, $b_{\mathrm{L}}^{\mathrm{CO}}$, transverse, $b_{\mathrm{T}}^{\mathrm{OC}}$, and vertical, $b_{\mathrm{V}}^{\mathrm{CO}}$) of the $\mathrm{C}_{\mathrm{ar}}-\mathrm{C}_{\mathrm{ar}}$ bonds in these planar hydrocarbons, the $b_{\mathrm{V}}^{\mathrm{CC}}$'s alone might be scalarly additive in the molecular b_{3} 's. In fact, we find that the b_{3} 's just quoted, together with the b_{3} reported previously ${ }^{6 b}$ for naphthalene, are covered by $b_{3}=0.413+0.0548 n$, where n is the number of carbon-carbon links in the molecule:

	Benzene	Naphthalene	Triphenylene	Coronene
n	6	11	21	30
b_{3}, calc.	0.74	1.02	1.56	$2 \cdot 06$
b_{3}, obs.	0.74	1.03	$1 \cdot 54$	$2 \cdot 07$

Applications of this empirical equation to the remaining hydrocarbons, and the results of using the b_{3} 's so calculated to reduce three unknown semi-axes to two, are given in Table 4.

The parentheses indicate cases where, in the last stage of evaluating b_{1} and b_{2} via a quadratic in either b_{1} or b_{2}, a small negative difference appears under the square-root sign. This trouble would be avoided were Q larger or S smaller than shown in Table 3, or were b_{3} greater than in Table 4. We suspect, but without proof, that underestimation of b_{3}

Table 4.

Predicted semi-axes.

Hydrocarbon	n	b_{3} (calc.)	b_{1}	b_{2}	Hydrocarbon	n	b_{3} (calc.)	b_{1}	b_{2}
Anthracene	16	1.29	$3 \cdot 39$	$2 \cdot 92$	Pyrene	19	$1 \cdot 45$	(3.5)	(3.5)
Naphthacene	21	$1 \cdot 56$	$4 \cdot 82$	$3 \cdot 47$	Fluoranthrene	19	$1 \cdot 45$	(3.65)	(3.65)
1,2-Benzanthracene	21	1.56	$4 \cdot 68$	3.51	Chrysene	21	$1 \cdot 56$	(4:1)	(4.1)
Phenanthrene.	16	1.29	(2.9)	(2-9)	Perylene	24	1.73	(4.4)	(4-4)

is mainly responsible, since the least values of b_{3} (calc.) which permit satisfactory solutions are for phenanthrene, pyrene, chrysene, fluoranthrene, and perylene, respectively, 1.51 , $1.63,1.59,1.52_{5}$, and 1.92 ; with these b_{3} 's the corresponding other axes become 2.8 for phenanthrene, 3.4 for pyrene, 3.6 for fluoranthrene, and 4.3 for perylene; the estimate of $4 \cdot 1$ for chrysene is unaffected.

Inspection of formulæ (I), (III) (V), (VI), and (VIII) suggests that for these structures the ratios of b_{1} to b_{2} might be nearly $1: 1$; rough calculations likewise indicate this. Le Fèvre, ${ }^{17}$ from a $\mathrm{C}_{a r}{ }^{-} \mathrm{C}_{\text {ar }}$ separation of $1 \cdot 4 \AA$, has given $b_{\mathrm{L}}^{\mathrm{OO}}$ as $0 \cdot 22$; from the b_{3} 's of benzene, ${ }^{6 d}$ naphthalene, ${ }^{6 b}$ triphenylene, and coronene (after allowance for the $\mathrm{C}-\mathrm{H}$ polarisabilities, and division by the number of $\mathrm{C}_{\mathrm{ar}}-\mathrm{C}_{\mathrm{ar}}$ links), $b_{\mathrm{V}}^{\mathrm{CO}}$ appears as $0.04-0.05$. Noting that for the $\mathrm{C}=\mathrm{C}$ bond $b_{\mathrm{T}} / b_{\mathrm{V}}$ is almost unity, and is exactly so for the $\mathrm{C}-\mathrm{C}$ bond, we may assume that in their hybrids the same applies. With $b_{\mathrm{L}}^{\mathrm{CO}}=0 \cdot 22, b_{\mathrm{T}}^{\mathrm{CO}}=0.05$, and all CCC angles regarded as 120°, quotients b_{1} / b_{2} emerge as phenanthrene $1 \cdot 06$, pyrene 1.05 , fluoranthrene $1 \cdot 02_{5}$, chrysene $1 \cdot 07$, perylene $1 \cdot 00$, and the corresponding totals $b_{1}+b_{2}$ (in order) as $5 \cdot 61,6 \cdot 41,6 \cdot 42,7 \cdot 21,8 \cdot 02$. These totals are smaller than those from Table 4 by approximately the amounts by which the sums $b_{1}+b_{2}+b_{3}$, if computed via 0.32 per $\mathrm{C}_{\mathrm{ar}}-\mathrm{C}_{\mathrm{ar}}$ and 0.19 per $\mathrm{C}-\mathrm{H}$ bond, fall short of the S values in Table 3. Such deficiencies need not be wholly due to the crudities of the calculations; varying exaltations of polarisability in the $b_{1} \times b_{2}$ planes of these hydrocarbons must be expected, but at present their contributions to the S 's cannot be predicted quantitatively.

The award of a Research Fellowship to K. M. S. S. by the N.S.W. State Cancer Council is gratefully acknowledged.

University of Sydney, N.S.W., Australia.
[Received, January 14th, 1963.]
${ }^{17}$ Le Fèvre, Proc. Chem. Soc., 1958, 283.

[^0]: ${ }^{1}$ Barry, Cook, Haslewood, Hewett, Hieger, and Kennaway, Proc. Roy. Soc., 1935, B, 117\%, 318.
 ${ }^{2}$ Bergmann, Cancer Res., 1942, 2, 660.
 ${ }^{3}$ Lettré, Z. physiol. Chem., 1944, 280, 28.
 ${ }^{4}$ Pullman, Ann. Chim., 1947, 2, 5; Bull. Assoc. franç. Cancer, 1947, 34, 245; Compt. rend., 1947, 224, 120; 225, 738.

 5 Pullman and Pullman, Experientia, 1946, 2, 364; Rev. Sci., 1946, 84, 145.
 ${ }^{6}$ Le Fèvre and Le Fèvre, (a) Rev. Pure Appl. Chem., 1955, 5, 261; (b) J., 1955, 1641; (c) Chap. XXXVI in " Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ., Inc., New York, London, 3rd edn., 1960, Vol. I, p. 2459; (d) J., 1954, 1577.

[^1]: ${ }^{7}$ Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953, Chap. 2; Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, J., 1956, 1405.
 ${ }^{8}$ Le Fèvre and Sundaram, $J ., 1962,1494$.
 ${ }^{9}$ Campbell, Le Fèvre, Le Fèvre, and Turner, $J ., 1938,404$.
 ${ }^{10}$ Briegleb, Z. phys. Chem., 1932, B, 16, 276.
 ${ }_{11}$ Lumbroso, Compt. rend., 1947, 225, 1003.
 12 Bergmann, Fischer, and Pullman, J. Chim. phys., 1951, 48, 356.
 ${ }^{13}$ Wesson, "Tables of Electric Dipole Moments," Technology Press, Massachusetts Inst. Technology, 1948.
 ${ }^{14}$ Sutton et al., " Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc. Spec. Publ., No. 11, 1958.
 ${ }_{15}$ Burns and Iball, Proc. Roy. Soc., 1960, A, 257, 491.

[^2]: ${ }^{16}$ Le Fèvre and Rao, $J ., 1956,3644$.

