851. Molecular Polarisability. The Molar Kerr Constants, Polarisations, etc., of Ten Polynuclear Hydrocarbons as Solutes in Benzene.

By R. J. W. LE Fèvre and K. M. S. SUNDARAM.

Values, from experiment, of the semi-axes of the polarisability ellipsoids of benzene, triphenylene, and coronene, suggest that $10^{23}b_3 = 0.413 +$ 0.0548n, where n is the number of carbon-carbon links in the molecule. This empirical equation is used, in conjunction with molar Kerr constants and refractivities, to estimate b_1 , b_2 , and b_3 for eight other polynuclear hydrocarbons. Results appear credible but at present cannot be checked by direct measurement.

LEAST unsuccessful of the attempts to correlate carcinogenic activity with molecular features seem to be those involving the sizes 1,2 or shapes 2,3 of the carcinogens and details of the electron distributions 4,5 therein. The anisotropy of polarisability of a molecule depends considerably on the same factors; 6a information—to date absent from the literature—on this property for cancer-producing substances might therefore be of interest. As a background to subsequent work the ten polynuclear hydrocarbons listed in Tables 1 and 2 have been examined. Several of them are parent structures of active carcinogens. Moreover, through their non-polarities, they present difficulties similar to those previously encountered with naphthalene; ^{6b} ways of overcoming these require consideration.

¹ Barry, Cook, Haslewood, Hewett, Hieger, and Kennaway, Proc. Roy. Soc., 1935, B, 117, 318.

² Bergmann, Cancer Res., 1942, 2, 660.
 ³ Lettré, Z. physiol. Chem., 1944, 280, 28.

⁴ Pullman, Ann. Chim., 1947, 2, 5; Bull. Assoc. franç. Cancer, 1947, 34, 245; Compt. rend., 1947, 224, 120; 225, 738.

⁵ Pullman and Pullman, Experientia, 1946, 2, 364; Rev. Sci., 1946, 84, 145.

⁶ Le Fèvre and Le Fèvre, (a) Rev. Pure Appl. Chem., 1955, **5**, 261; (b) J., 1955, 1641; (c) Chap. XXXVI in "Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ., Inc., New York, London, 3rd edn., 1960, Vol. I, p. 2459; (d) J., 1954, 1577.

TABLE 1.

Increments of refractive indexes, densities, Kerr and dielectric constants observed with solutions in benzene at 25°.

					Solute:	Anthr	acene					
105.00		191	222	319	320	409	654	85	6 8	97	994	1244
$10 w_2 \dots$	••••	101	5	7	020	100	19	i	7	19	20	24
$10^{-}\Delta n$	••••	14	10				14			57	50	79
$10^4 \Delta n^2 \dots$	••••	12	16	20		20	30		2	57	150	2017
$10^{5}\Delta d$		38	<u> </u>	<u> </u>		77	122	15	b -	-	179	237
104Δε		10	11	20	18	26	40) 5	0	52	64	78
$10^{11}\Lambda B$.		104	<u> </u>			220	- 366	5 47'	7 -	_	540	651
10	,				$\mathbf{\nabla}$	0 000	54.115		070. T	A . 15	0.00	4.
whence $\sum \Delta n / \sum w_2 = 0.202$; $\sum \Delta n^2 / \sum w_2 = 0.600$; $\sum \Delta d / \sum w_2 = 0.1859$; $\sum \Delta \varepsilon / \sum w_2 = 0.604$; $\sum \Delta B / \sum w_2 = 5.42 \times 10^{-7}$.												
		Solute	Dhomant	hrono				Solu	te: Nat	hthacen	P.	
		Solule:	Fnenani	nrene			~	3014		~0	104	200
$10^5 w_2$	••••	995	1611	2554	3256	10	•w ₂	12	0 1	56	194	203
$10^4\Delta n$		16	26	42	53	10	$^{5}\Delta n$		2	4	5	6
$10^4\Delta n^2$	•••••••	48	78	126	159	10	${}^{5}\Delta n^{2}\ldots$	(6	12	15	18
$10^{5}\Delta d$		199	324	522	663	10	⁵ ∆d		2	4	5	6
104 \s		50	81	127	164	10	5Δε	—		10	12	19
1010AB	•••••	91	38	57	71	10	11AR	19	2	14	18	20
10 20						10			-	5.5.4	10	
whence 2	$\sum \Delta n/2$	$w_{2} = 0$	·163;_Σ.	$\Delta n^2 / \sum w_2 =$	= 0.488;	W	hence 2	$\Delta n / \Sigma w_2$	= 0.252	$\sum \Delta n$	$^{\prime}/\Delta w_{2} =$	0.756;
$\Sigma \Delta c$	$d \sum w_2$	= 0.202	29; ΣΔε	$\sum w_2 = 0$	$0.501_4;$		$\sum \Delta d$	$\sum w_2 = 0$).2526;	$\sum \Delta \varepsilon / \sum \varepsilon$	$w_2 = 0.7$	41;
	<u> </u>	$B/\Delta w_2$	$= 2 \cdot 22$	× 10 ⁴ .					$\Delta w_2 = 1$	9.01 X	10 .	
		Solute	1 2-Ben	anthvacen	P				Solute :	Chrvse	ne	
1.05		<i>301110</i> .	1,2-Den	150 010		100	105			2 10	0 004	951
10°u 2	33	68	99	170 240	320	406	10°w	2 • • • • • • • • • • • •	9	0 102	2 284	351
$10^4 \Delta n \dots$	1	2	3	4 6	37	10	$10^{4}\Delta$	n	2	2 4	1 7	9
$10^4 \Delta n^2$	3	6	9	12 18	8 21	30	$10^{4}\Delta$	n^2	(3 12	2 21	27
$10^{5}\Delta d$	8	18	26	43 60) 84	104	$10^{5}\Delta$	d	24	4 4	5 72	81
10 ⁴ As		5	7	13 18	3 24	30	10 ⁴ Δ	ε		7 12	2 20	26
1010AB	3	ĕ	ġ	14.4 2	28	36	1010/	R	,	7 1	3 21	26
10 30				111 2	. 20		10 1		·····	· · ·		
when	<u>ce∑∆</u> á	$m/\Sigma w_2 =$	= 0.247;	$\sum \Delta n^2 / \sum u$	$v_2 = 0.7$	41;	-	when	ice $\Delta \Delta n$	$ \Delta w_2 =$	0.246;	
Σ	$\Sigma \Delta d / \Sigma$	$w_2 = 0.$	2567; Σ	$\Delta \varepsilon / \sum w_2 =$	= 0.744;		$\Sigma \Delta i$	$m^2/\sum w_2 =$	= 0·7 3 9;	$\sum \Delta d/2$	$w_2 = 0$	2486;
		$\overline{\Sigma}\Delta B/$	$\Sigma w_2 = 8$	$\cdot 79 \times 10^{-1}$	7.		$\sum \Delta \epsilon / \sum$	$\Sigma w_2 = 0$	728; Σ	$\Delta B / \sum w_{i}$	$_{2} = 7.50$	imes 10-7 .
							-	-			-	
			Solute:	Pvrene					Solute:	Triphe	envlene	
105	010	1000 1	204 169	1 1099	9165	0491	9609	105	191 9	06 20	19 494	541
10022	810	1082 1	304 102	1 1000	2105	2431	2098	10°2	121 2	00 30	0 404	10
$10^4 \Delta n$	18	24	29	56 43	48	55	58	$10^{*}\Delta n$	3	4	0	<i>j</i> 12
$10^4\Delta n^2$	54	71	87 10	07 129	144	164	173	$10^4\Delta n^2$	9	12 .	18 27	36
$10^{5}\Delta d$	193	257	309 38	37 438	516	580	647	$10^{5}\Delta d$	32	50	76 109	ə 13 0
104Δε	54	71	95 10	08 123	138	160	175	104Δε	8	14	18 31	35
10 ¹⁰ AB	34	45	54 (36 76	89	100	121	$10^{11}\Delta B$	78 1	34 20	09 273	3 347
10	· · ·				5	200			5	· /\	0.010	
whe	ence 2	$\Delta n / \Sigma w$	$_{2} = 0.22$	3; $\sum \Delta n^2/$	$\Delta w_2 = 0$	J·666;	-	wr	ience Σ	$\Delta n / \Delta w_2$	= 0.212	2;
	$\sum \Delta d$	$\sum w_2 =$	0.2386;	$\sum \Delta \varepsilon / \sum w_2$	$_{2} = 0.65$	6;	2	$\Delta n^2 / \sum w_2$	= 0.63	6; <u>Σ</u> Δα	$l/\Sigma w_2 =$	0.2474;
		$\sum \Delta B$	$1/\Sigma w_2 =$	$4 \cdot 195 \times 1$	10-7				$\sum \Delta \epsilon / \Sigma$	$w_{2} = 0$	·661;	
								$\Sigma \Delta$	$AB/\Sigma w_{*}$	= 6.48	3×10^{-7}	
								_	/			
	So	lute: Fl	uoranthr	ene				Soli	ute: Cor	onene		
10540	92	1 501	675 9/	4 010	1132	10640	590	540	603	812	1028	1138
$10^{4}\omega_{2}$	20	z 10	15 1	10 01	96	$10^{4} M_{2}$	020	040	000	2	1020	1100
$10^{4}\Delta n \dots$	··· _'		10		20	$10^{-}\Delta n$	1	1	2	0	3	10
$10^4 \Delta n^2$	1	5 36	45	54 63	11	$10^{4}\Delta n^{2}$	' č	i 3	6	9	9	12
$10^{\mathfrak{s}}\Delta d \dots$	5	0 111	142 I'	70 192	242	whe	ence $\Sigma \Delta$	$n / \sum w_n =$	0.295:	$\sum \Delta n^2 / \sum$	$\Sigma w_{n} = 0$	·886.
10 ⁴ Δε	1	5 30	49	56 62	69			·/ <u> </u>	• =00,			0001
$10^{11}\Delta B$	13	6 276	411 4'	72 515	645	10644	248	590 5/	10 603	764	Q19 Q9	0 003
			$\sqrt{\Sigma}$	0.995.		$10^{-}w_{2}$	340	15 1	EU 090	01	012 02 09 0	9 903
	wher	Δn	$\sqrt{2w_2} =$	0.225;		$10^{\circ}\Delta a$	10	10	15 20	21	23 Z	5 20
$\sum \Delta n^2$	$\sum w_2 =$	= 0.674	$\sum \Delta a/2$	$w_2 = 0.2$	107;		v	whence Σ	$\Delta d / \sum w_{a}$	= 0.28	10.	
$\sum \Delta \varepsilon / \sum w$	$v_2 = 0$	653; Σ	$\Delta B / \Sigma w_2$	$= 5.70 \times$	10-7.			_				
						10 ⁶ w.	529	540	693	764 8	12 820	1138
		Solute:	Perylen	9		104	020	6	5	7	8 8	11
10500	8	0	129	199	221	10 116	0	0		•		
104 1 10	0	2	3	4				whence 🔉	$\Delta \varepsilon / \Sigma w$	$v_2 = 0.9$	44.	
104 1 42	•••	6	ŏ	19	15							
10547	••••	0	20	14	10 20	10°w.	2	64	439	70	3	914
$10^{\circ}\Delta d \dots$	1	ษ	30	48	53	1010 1 7	3	3	5	.0	8	11
10°Δε	•••	ð	8	13	15	-0 DL		, - -	5			••
$10^{10}\Delta B$		4·5	8	12	14		whe	nce $\Sigma \Delta B$	$\sum w_2 =$	11.64	$\times 10^{-7}$.	
	S	100 - 0	·223 · 5	$n^2/\sum_{n=1}^{\infty} =$	= 0.668.				-			
whence	7./\11/7	···· · · · · · · · · · · · · · · · · ·	/ //									
whence $\sum_{\Lambda \neq A}$	$\sum \Delta n / \sum n / i / i / i / i / i / i / i / i / i /$	-0.939	$5 \cdot \sum A = i$	$\sum_{10} = 0.4$	352.							
whence $\sum \Delta d$	$\sum \frac{\Delta n}{\Sigma}$	= 0.238	5; $\sum \Delta \varepsilon / 2$	$\sum w_2 = 0.6$	352;							

TABLE 2.

Total polarisations at infinite dilution, molar refractions, dipole moments, and molar Kerr constants calculated from Table 1.

Solute	αε1	β	γ	$\gamma' n_1^2$	δ	${}^{\infty}P_{2}$ (c.c.)	${}_{\infty}R_{\mathbf{D}}$ (c.c.)	${}^{\infty}({}_{ m m}K_2) \ imes 10^{12}$
Anthracene	0.604	0.2126	0.135	0.573	$13 \cdot 22$	68.0	67.3	183
Phenanthrene	0.201	0.2322	0.109	0.488	5·41.	63.4	62.4.	78.5
Naphthacene	0.741^{-1}	0.2891	0.168	0.756	$23 \cdot 20$	$87 \cdot 1$	87.2	403
1,2-Benzanthracene	0.744	0.2938	0.165	0.741	21.44	86.9	86.3	373
Pyrene	0.656	0.2731	0.149	0.666	10.23	75.0	74.9	160
Chrysene	0.728	0.2845	0.164	0.739	18.30	86.9	86.9	319
Triphenylene	0.661	0.2831	0.142	0.636	15.82	$84 \cdot 2$	82.5	277
Fluoranthrene	0.653	0.2411	0.120	0.674	13.90	77.1	77.4	217
Perylene	0.652	0.2730	0.149	0.668	14.93	93.5	93 ·6	288
Coronene	0.944	0.3216	0.192	0.886	28.40	122.6	118.9	650

EXPERIMENTAL

Solvent and Solutes .--- Sodium-dried thiophen-free benzene was partially frozen, and the remelted solid stored over sodium wire. The solutes used had m. p.s as follow: anthracene (chromatographically pure), 216-217°; phenanthrene, 101-102°; naphthacene, 340-341°; 1,2-benzanthracene, 159—160°; pyrene, 149—150°; chrysene, 250—251°; triphenylene, 198— 199°; fluoranthrene, 110—111°; perylene, 273—274°; and coronene, >400° (lit., 438—440°). The triphenylene was a gift from Professor G. M. Badger (University of Adelaide); apart from this the hydrocarbons were commercial specimens recrystallised from benzene. Purified samples of anthracene, fluoranthrene, perylene, and coronene were also presented by Dr. L. E. Lyons (University of Sydney).

Measurements and Results.—Apparatus and techniques have been those standard here.^{6a, c, 7} Table 1 lists the changes of refractive index (Na light), density, dielectric constant, and Kerr constant caused by weight fractions w_2 of solute in benzene; when $w_2 = 0$ the properties named have values, respectively, at 25° as follow: $n_1 = 1.4973$, $d_1 = 0.87378$, $\varepsilon_1 = 2.2725$, and $B_1 = 0.87378$ 0.410×10^{-7} . Symbols are defined and methods of calculation explained in refs. 6a and c; they are briefly summarised in ref. 8.

DISCUSSION

Dipole Moments.—Despite the non-centrosymmetric structures of phenanthrene (I), 1,2-benzanthracene (II), and fluoranthrene (III), the closeness of the total polarisations and molecular refractions listed in Table 2 shows each solute to have a dipole moment experimentally undistinguishable from zero. Similar conclusions have previously been reached with anthracene,⁹ phenanthrene,¹⁰ naphthacene,¹¹ and triphenylene.¹² Wesson ¹³ quotes the polarity of perylene as 1.3-2.1 D, but Bergmann, Fischer, and Pullman¹² report it as 0.45 + 0.15 D. Our experience has been that the dielectric constants of solutions of several of these hydrocarbons rise on storage, presumably owing to oxidation, and thus lead to apparent moments up to ca. 1 D; the higher past results with perylene may have been so caused. Of course, from the molecular dimensions given in ref. 14 for anthracene, pyrene, perylene, and coronene, and in ref. 15 for chrysene, non-polarity is to be expected.

⁷ Le Fèvre, "Dipole Moments," Methuen, London, 3rd edn., 1953, Chap. 2; Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, J., 1956, 1405.
⁸ Le Fèvre and Sundaram, J., 1962, 1494.
⁹ Campbell, Le Fèvre, Le Fèvre, and Turner, J., 1938, 404.

¹⁰ Briegleb, Z. phys. Chem., 1932, B, 16, 276.
¹¹ Lumbroso, Compt. rend., 1947, 225, 1003.
¹² Bergmann, Fischer, and Pullman, J. Chim. phys., 1951, 48, 356.
¹³ Wesson, "Tables of Electric Dipole Moments," Technology Press, Massachusetts Inst. Technology, 1948.

¹⁴ Sutton et al., "Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc. Spec. Publ., No. 11, 1958.
 ¹⁵ Burns and Iball, Proc. Roy. Soc., 1960, A, 257, 491.

Molar Kerr Constants.—To the values in Table 2 we add the $_{\rm m}K$'s already recorded for benzene 6d and naphthalene 6b (7·2₄ × 10⁻¹² and 48·1 × 10⁻¹², respectively). Being non-polar, all these hydrocarbons must have zero θ_2 terms in the expansion $_{\rm m}K =$

 $2\pi N(\theta_1 + \theta_2)/9$ (cf. p. 286 of ref. 6*a*), so that the observed molar Kerr constants can directly provide estimates of the quantity

$$Q = (b_1 - b_2)^2 + (b_2 - b_3)^2 + (b_3 - b_1)^2,$$

where b_1 , b_2 , and b_3 are the semi-axes of the molecular polarisability ellipsoid; Q is thus a measure of the anisotropy in each case. Alternatively, with $S = b_1 + b_2 + b_3$ from $_{\rm E}P = 0.95R_{\rm D}$, the anisotropy may be expressed by the quotient Q/S^2 (cf. Le Fèvre and Rao¹⁶). Values of Q and S are in Table 3. By either criterion the rapid increase

TABLE 3.

Anisotropies of polynuclear hydrocarbons.

	$10^{46}Q$	1023S	$10^{3}Q/S^{2}$		$10^{46}Q$	$10^{23}S$	$10^{3}Q/S^{2}$
Benzene	0.29	2.976	33	Pyrene	6.40	8.461	89
Naphthalene	1.92	4.970	78	Chrysene	12.8	9.817	133
Anthracene	7.32	7.602_{5}	127	Triphenylene	11.1	9.320	128
Phenanthrene	3.14	7.053_{5}	63	Fluoranthrene	8.68	8.743	1135
Naphthacene	16.1	9.850_{5}	166	Perylene	11.5	10.57	103
1,2-Benzanthracene	14.9	9.749	157	Coronene	26.0	13.43	144

of anisotropy resulting from an additional ring is noticeable in the linear sequence, benzene, naphthalene, anthracene, and naphthacene, Q/S^2 changing by 0.04—0.05 per extra ring. Angular attachment appears to lower the anisotropy, *e.g.*, among the four isomers $C_{18}H_{12}$ from naphthacene (IV), through 1,2-benzanthracene (II), and chrysene (VI), to triphenylene (VII), or from anthracene to phenanthrene. However, no regular relations with numbers of rings or bonds can be discerned.

Semi-axes of Polarisability Ellipsoids.—As ref. 6b explains, with non-polar structures three differing semi-axes cannot be evaluated by the methods applicable to polar molecules. However, among the twelve hydrocarbons under consideration three should, by symmetry, have polarisability ellipsoids of revolution, so that only two unknowns $(b_1 = b_2, \text{ and } b_3)$ require to be found; from earlier ^{6d} measurements on benzene and the data in Table 2 the following can be deduced:

	$b_1 = b_2$	b_3
Benzene	1.12	0.73_{6}
Triphenylene	3.89	1.54
Coronene	5.68	2.07

¹⁶ Le Fèvre and Rao, J., 1956, 3644.

Of the three polarisabilities (longitudinal, $b_{\rm L}^{\rm CO}$, transverse, $b_{\rm T}^{\rm CO}$, and vertical, $b_{\rm V}^{\rm CO}$) of the $C_{\rm ar}-C_{\rm ar}$ bonds in these planar hydrocarbons, the $b_{\rm V}^{\rm CO}$'s alone might be scalarly additive in the molecular b_3 's. In fact, we find that the b_3 's just quoted, together with the b_3 reported previously 6b for naphthalene, are covered by $b_3 = 0.413 + 0.0548n$, where *n* is the number of carbon-carbon links in the molecule:

	Benzene	Naphthalene	Triphenylene	Coronene
<i>n</i>	6	11	21	3 0
b_3 , calc	0.74	1.02	1.56	2.06
<i>b</i> ₃ , obs	0.74	1.03	1.54	2.07

Applications of this empirical equation to the remaining hydrocarbons, and the results of using the b_3 's so calculated to reduce three unknown semi-axes to two, are given in Table 4.

The parentheses indicate cases where, in the last stage of evaluating b_1 and b_2 via a quadratic in either b_1 or b_2 , a small negative difference appears under the square-root sign. This trouble would be avoided were Q larger or S smaller than shown in Table 3, or were b_3 greater than in Table 4. We suspect, but without proof, that underestimation of b_3

TABLE 4.

Predicted semi-axes.

Hydrocarbon	п	b ₃ (calc.)	b_1	b_2	Hydrocarbon	n	b_{3} (calc.)	b_1	b_2
Anthracene	16	1.29	3.39	2.92	Pyrene	19	1.45	(3.5)	(3.5)
Naphthacene	21	1.56	4.82	3.47	Fluoranthrene	19	1.45	$(3 \cdot 6_{5})$	(3·6 ₅)
1,2-Benzanthracene	21	1.56	4.68	3.51	Chrysene	21	1.56	(4·1)	(4·1)
Phenanthrene	16	1.29	(2.9)	$(2 \cdot 9)$	Perylene	24	1.73	(4·4)	(4 ·4)

is mainly responsible, since the least values of b_3 (calc.) which permit satisfactory solutions are for phenanthrene, pyrene, chrysene, fluoranthrene, and perylene, respectively, 1.51, 1.63, 1.59, 1.52₅, and 1.92; with these b_3 's the corresponding other axes become 2.8 for phenanthrene, 3.4 for pyrene, 3.6 for fluoranthrene, and 4.3 for perylene; the estimate of 4.1 for chrysene is unaffected.

Inspection of formulæ (I), (III) (V), (VI), and (VIII) suggests that for these structures the ratios of b_1 to b_2 might be nearly 1:1; rough calculations likewise indicate this. Le Fèvre,¹⁷ from a $C_{ar}-C_{ar}$ separation of 1.4 Å, has given b_L^{OO} as 0.22; from the b_3 's of benzene,^{6d} naphthalene,^{6b} triphenylene, and coronene (after allowance for the C-H polarisabilities, and division by the number of $C_{ar}-C_{ar}$ links), b_V^{OO} appears as 0.04—0.05. Noting that for the C=C bond b_T/b_V is almost unity, and is exactly so for the C-C bond, we may assume that in their hybrids the same applies. With $b_L^{OO} = 0.22$, $b_T^{OO} = 0.05$, and all CCC angles regarded as 120°, quotients b_1/b_2 emerge as phenanthrene 1.06, pyrene 1.05, fluoranthrene 1.02₅, chrysene 1.07, perylene 1.00, and the corresponding totals $b_1 + b_2$ (in order) as 5.61, 6.41, 6.42, 7.21, 8.02. These totals are smaller than those from Table 4 by approximately the amounts by which the sums $b_1 + b_2 + b_3$, if computed via 0.32 per $C_{ar}-C_{ar}$ and 0.19 per C-H bond, fall short of the S values in Table 3. Such deficiencies need not be wholly due to the crudities of the calculations; varying exaltations of polarisability in the $b_1 \times b_2$ planes of these hydrocarbons must be expected, but at present their contributions to the S's cannot be predicted quantitatively.

The award of a Research Fellowship to K. M. S. S. by the N.S.W. State Cancer Council is gratefully acknowledged.

UNIVERSITY OF SYDNEY, N.S.W., AUSTRALIA.

[Received, January 14th, 1963.]

17 Le Fèvre, Proc. Chem. Soc., 1958, 283.